Daphne E. Schlesinger

36 Vassar Street, 36-767 Cambridge, MA 02139 daphneschles@gmail.com (412) 862-6427

Education

2018-2024	Massachusetts Institute of Technology PhD in Medical Engineering and Computer Science
2014-2018	Johns Hopkins University BS in Biomedical Engineering and in Physics

Work Experience

2019–present	nt Collin Stultz's Computational Cardiovascular Research Group Graduate Researcher	
	• Applied state-of-the-art deep learning methods to non-invasively infer central hemodynamics from the 12-lead electrocardiogram	
	• Fine-tuned and applied the above model to single lead electrocardio- graphic signals in order to detect hemodynamic congestion, and evalu- ated on wearable device data, creating a tool to improve the manage- ment and outcomes of patients with chronic heart failure	
	• Participated in the planning and execution of prospective clinical studies to collect data to evaluate deep learning models	
	• Developed a novel framework to incorporate mechanistic knowledge into machine learning models, in order to infer latent parameters of the cardiovascular system in patients with advanced heart failure	
	• Processed and analysed diverse clinical data, including electrocardio- graphic and hemodynamic timeseries, and tabular data concerning to vitals, lab results, medications, and demographics	
Summer 2023	Tempus Labs Maghing Learning Summer Associate	
	 Applied Vision Transformers to the electrocardiogram to predict the future onset of cardiac arrhythmias, including fine-tuning large pre- trained Vision Transformers on electrocardiographic data for the above downstream task 	
	• Updated existing model training infrastructure to support custom Vision Transformer architectures	
	• Utilized Google Cloud Platform to launch model training jobs and eval- uate over a range of hyperparameters, and profiled model training runs with TensorBoard to optimize GPU utilization	

Work Experience (cont.)

2019	Thomas Heldt's Integrative Neuromonitoring and Critical Care Informatics Group
	 Evaluated machine learning models for sepsis-related vasopressor admin- istration in the emergency department
2017-2018	The Institute for Data Intensive Engineering and Science (IDIES) Undergraduate Researcher
	• Applied unsupervised ML pre-processing techniques to pathologic scans
	• Designed and implemented a graphical user interface for pathology im- age analysis
2014-2018	Jordan Green's Biomaterials and Drug Delivery Laboratory Undergraduate Researcher
	• Designed and fabricated microscale needles for drug delivery
	• Fabricated and tested microfluidic devices for monodisperse polymer particle synthesis
	• Fabricated and tested laser triggered drug release and shape memory PDLLA microparticles, and synthesized gold nanorods for embedding in microparticles
	• Utilized imaging techniques including scanning electron miscroscopy, transmission electron microscopy, and fluorescent microscopy to profile microparticles for size and morphology
2017	Johns Hopkins University Department of Biomedical Engineering Teaching Assistant
	• Precepted and graded exams for a cell biology course, Molecules & Cells
2017-2018	Johns Hopkins Center for Bioengineering Innovation and Design (CBID) Undergraduate Design Team Leader
	• Recruited and managed a team of students to develop a design solution to a biomedical problem
	• Project subject: Detecting malfunction in cerebroventricular shunts
2015-2017	Johns Hopkins University Academic Support Peer-Led-Team (PILOT) Learning Group Leader
	• Helped peers to develop problem solving skills in Multivariable Calculus and Electricity & Magnetism
2016	Johns Hopkins Applied Physics Laboratory (APL) Summer Research Intern
	• Performed electromagnetic simulations on metamaterial models for non- specular reflection of radiation in CST Microwave Studio
2015-2016	Johns Hopkins University Department of Physics & Astronomy Physics I Lab Learning Assistant
	• Assisted students in Physics I laboratory course by explaining methods and answering technical questions

Honors & Awards

2020	National	Science	Foundation	Graduate	Research	Fellow
------	----------	---------	------------	----------	----------	--------

- 2018 David T. Yue Memorial Award for Undergraduate Teaching
- 2016 Provost's Undergraduate Research Award

Computer Languages & Skills

ProficientPython (TensorFlow and PyTorch), MATLAB, LaTeX, Unix, Bash, GitinJulia, Java, SQL, Google Cloud Platform (GCP)

Additional Activities

2024	AI in Healthcare Course at Harvard Medical School course design
2022, 2024	Learning from Time Series for Health (TS4H) NeurIPS workshop reviewer
2022, 2023	Machine Learning for Healthcare (ML4H) conference reviewer
2019-2020	MIT Graduate Hillel Student Board
	President
2018 - 2019	Harvard-MIT Health Sciences and Technology Joint Council
	Representative to the MD Curriculum Committee
2017-2018	Engineering Educational Outreach, Barclay Middle School, Baltimore, MD
	Student Leader

Publications

2023	Daphne Schlesinger, Ridwan Alam, Roey Ringel, Eugene Pomerantsev, Srikanth
	Devireddy, Pinak Shah, Joseph Garasic, and Collin M Stultz. Artificial intelli-
	gence for outpatient hemodynamic monitoring with a wearable ECG monitor.
	Submitted, 2023
2023	Aniruddh Raghu, Daphne Schlesinger, Eugene Pomerantsev, Srikanth De-
	vireddy, Pinak Shah, Joseph Garasic, John Guttag, and Collin M Stultz. ECG-
	guided non-invasive estimation of pulmonary congestion in patients with heart
	failure. Scientific Reports, 13(1):3923, 2023
2022	Daphne E Schlesinger, Nathaniel Diamant, Aniruddh Raghu, Erik Reinertsen,
	Katherine Young, Puneet Batra, Eugene Pomerantsev, and Collin M Stultz. A
	deep learning model for inferring elevated pulmonary capillary wedge pressures
	from the 12-lead electrocardiogram. JACC: Advances, 1(1):100003, 2022
2020	Daphne E Schlesinger and Collin M Stultz. Deep learning for cardiovascular risk
	stratification. Current Treatment Options in Cardiovascular Medicine, 22(8):1-
	14, 2020
2018	Qiongyu Guo, Corey J Bishop, Randall A Meyer, David R Wilson, Lauren
	Olasov, Daphne E Schlesinger, Patrick T Mather, James B Spicer, Jennifer H
	Elisseeff, and Jordan J Green. Entanglement-based thermoplastic shape memory
	polymeric particles with photothermal actuation for biomedical applications.
	ACS applied materials & interfaces, 10(16):13333-13341, 2018

Poster Presentations

2022	MIT Jameel Clinic AI Cures Conference
	RHCNet: A deep learning model for inferring elevated pulmonary capillary
	wedge pressures from the 12-lead electrocardiogram
	DE Schlesinger, N Diamant, A Raghu, E Reinertsen, K Young, P Batra, E
	Pomerantsev, CM Stultz
2022	American College of Cardiology Scientific Session
	A deep learning model for inferring elevated pulmonary capillary wedge pressures
	from the 12-lead electrocardiogram
	DE Schlesinger, N Diamant, A Raghu, E Reinertsen, K Young, P Batra, E
	Pomerantsev, CM Stultz
2018	BMES Annual Meeting
	Computational Modeling of Valve Behavior in Hydrocephalus Shunts
	DE Schlesinger, R Najmi, V Ayyappan, D Navarro, W Zhao, H Wiegand, S
	Hemmati, A Kleine, C Heier, M Luciano, A Manbachi
2018	BMES Annual Meeting
	Experimental Characterization of Valve Behavior in Hydrocephalus Shunts
	DE Schlesinger, R Najmi, V Ayyappan, D Navarro, W Zhao, H Wiegand, S
	Hemmati, A Kleine, C Heier, M Luciano, A Manbachi
2017	Tissue Engineering & Regenerative Medicine Annual Conference
	Entanglement-based thermoplastic shape memory polymeric particles with pho-
	to thermal actuation for biomedical applications
	DE Schlesinger, Q Guo, CJ Bishop, RA Meyer, DP Wilson, L Olasov, JB
	Spicer, JH Elisseeff, JJ Green
2017	IDIES Annual Symposium
	Big Data Approaches to Cancer Immunotherapy
	DE Schlesinger, T Cotrell, P Nguyen, S Berry, B Green, N Giraldo, JM Taube,
	A Szalay
2016	International Nanomedicine & Drug Delivery Symposium
	Polymer microneedles for advanced transdermal drug delivery
	DE Schlesinger, RA Meyer, JJ Green

Patents

2023 Submitted: Method and Apparatus for Inferring Elevated Pulmonary Capillary Wedge Pressures from Single-Lead Electrocardiogram Telemetry Data DE Schlesinger, R Alam, CM Stultz